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J. Phys. A: Math. Gen. 14 (1981) 3047-3058. Printed in Great Britain 

Instantons versus the low-temperature expansion? 

A C Davis$ and R J Rivers 
Blackett Laboratory, Imperial College, London SW7 2BZ, England 

Received 25 September 1980, in final form 13 April 1981 

Abstract. We examine the O(2) nonlinear r model at finite temperature in one dimension. 
The relationship between the low-temperature expansion (the analogue to the 1/N 
expansion) and instanton calculation is clarified. We show how the seemingly non- 
perturbative (in h)  instanton calculation can be re-expressed as a power series in h. Further, 
our calculations suggest that unstable instantons also play a role in path integral cal- 
culations. 

1. Introduction 

It is now accepted that perturbative expansions (in h) for local quantum field theories 
are not necessarily adequate, and non-perturbative approaches have been developed. 
Two such methods are semiclassical instanton methods (Coleman 1977, ’t Hooft 1976) 
and the 1/N expansion (’t Hooft 1974, Witten 1979, Coleman 1980). 

In the instanton method (see Coleman 1977, ’t Hooft 1976 and references therein) 
the number of fields, N, is fixed and the Euclidean functional integrals approximated in 
the h + 0 limit. Thus, an expansion is developed around the finite action classical 
solutions to the Euclidean equations of motion. On the other hand, the 1/N expansion 
corresponds to holding h fixed and performing the Minkowski functional integrals by 
saddle-point approximation in the N + CO limit. 

There has been considerable discussion about the equivalence or otherwise of the 
two approaches. Recently, Jevicki (1979) has proposed a program for analysing the 
equivalence of the two approximations in theories like the linear U models and 
nonlinear a models (NLSM). However, even for such simple models there are 
difficulties. Here, we apply Jevicki’s method to the simpler case of finite-temperature 
quantum mechanics. Before explaining what we hope to learn from this example we 
briefly summarise Jevicki’s methdd. 

Jevicki observed that in such models the introduction of auxiliary fields can provide 
a framework for instanton calculations, as well as the 1/N expansion. For example, in 
the two-dimensional O(N) invariant NSLM the (Euclidean) partition function 

t This is a revised and extended version of ICTP/79-80/19. 
$ Address after 1 October 1980: Theory Division, CERN, Geneva. 
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can be re-expressed as 

d2xA. 
iNf 

= 5 [dA][det(-a2+iA)]-N'2 exp- 2h (1.3) 

2 of equation (1.3) can be evaluated in two different ways. For instance, for each 
multi-instanton solution, (p'"', there is a value, A'"',  of the auxiliary field such that 
det( - a2 + ih ("I) is zero. Thus, we can evaluate 2 by deforming the 'contour' in A 'space' 
to enclose the zeros of det( - 8' + ih) associated with the classical solutions A ( n ) .  Using 
Cauchy's theorem for the degrees of freedom for which the zeros occur and the 
Gaussian approximation for the others in the A-, 0, fixed N limit we should reproduce 
the instanton calculation?. 

Alternatively, equation (1.3) can be rewritten as 

2 = [dh] exp - N%[A] I (1.4) 

and evaluated in the N + 00, fixed h limit by deforming the A 'contoui,' to pass through 
the saddle point, Ao,  of the 'effective action' 

if' 
%[A] = - 5 d'xh - iTr In( - d2 + ih ). 2h (1.5) 

This is the 1/N expansion. 
Thus, the equivalence (or not) of the instanton and 1/N approximation depends on 

the ability to deform contours and the commutativity of the limits h + 0, N + CO. There 
is no reason to expect them to give identical results, but the above formalism gives a 
common framework in which to examine each method. 

Jevicki's approach seems so intuitively correct that it might be wondered why we 
should want to demonstrate it in such a simple model (the one-dimensional, finite 
temperature NLSM) and what we hope to learn. However, the argument presented by 
Jevicki and summarised above is oversimplified. For example, there is not necessarily a 
one-to-one correspondence between instanton configurations ( p ( n )  and auxiliary field 
solutions A'"' (which may not distinguish between instantons and anti-instantons). 
Furthermore the heuristic claim that all relevant poles come from classical solutions 
needs to be examined in detail to check its validity. 

2. Nonlinear U models in one dimension 

In order to understand the relationship between instanton and 1/N expansions better 
we wish to concentrate on theories for which the N + 00 and h + 0 limits commute. This 
is the case whenever the instanton calculations are exact. Theories for which the 
semiclassical approximation is exact include quantum mechanics of free particles 
moving on a manifold, XR, of a simple Lie group (Schulman 1968, Dowker 1970,1971). 
To have instantons we must consider finite-temperature quantum statistical mechanics 
(i.e. all Euclidean fields ,$(T) have periodicity with period p = (kT) - ' ) .  To permit stable 

f We only have stable instantons for N = 3, but the generalisation to more realistic models is straightforward. 
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instantons we require I11(D2) to be non-trivial. In practice, we are forced to consider the 
O(2) nonlinear cr model in one dimension at finite temperature. Here the manifold is S’ 
and II1(S’) = Z. (The O(4) model is exactly solvable but does not have stable instan- 
tons?.) 

Since we are forced to consider the O(2) NLS model how can we do a sensible 1 / N  
expansion for N = 2? The answer is not to do so, but to re-examine the motivation for 
the 1 / N  expansion. For the 1 / N  expansion to be possible the numerator and 
denominator of the path integral under consideration have to vary equally rapidly for 
large N. In  our case we have the parameter, p = (kT)-’, which becomes large as T + 0. 
Fixing N and taking the p --f CO limit the numerator and denominator again vary equally 
rapidly, permitting a low-temperature expansion. This is combinatorially similar to a 
large N expansion. Thus, for our O(2) model we compare the (exact) instanton 
calculation to a 1 / p  expansion, using Jevicki’s programme. For the remainder of this 
section we shall discuss the model and its exact solution. 

The O(2) NLSM has a single complex field cp satisfying 

Icpl’ = f 2  (2.1) 

and classical action 
P 

A = t lo dTId/’. 

It is sufficient to evaluate the two-point function$ 

Parametrising cp as 
- c p = p e x p i i  P’O 

equation (2.3) can be rewritten as§ 

where x = i (mod 2 7 )  and 

E[;] = exp -%lo f2 dTi2 .  

All closed periodic paths must be considered in equation (2.5). We first restrict 
ourselves to those paths for which 

x ( O ) = x ( P ) = x o .  (2.7) 

t Only the O(2) model has stable instantons. This is analogous to the two-dimensional ce where only the O(3)  
model has stable instantons. However, in the one-dimensional case generalising to other manifolds (like 
Cl”-’) does not help. We lose the infinite-connectness, the identification with a Lie group, or both. 
$ We wish to keep track of factors of h for the reasons indicated in the introduction. To bring the formalism 
into accord with conventional instanton calculations, where classical solutions are h independent, we have not 
replaced p by Oh. 
$ In general it is not permissible to replace +: + Cp: by p 2  + ‘p2k2  in path integrals (Edwards and Gulyaev 
1964). However, when dealing with periodic paths at fixed p all that happens is a change of normalisation, 
with no effect on the ratio (2 .5) .  
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The classical paths are 

i n  (7) = O n 7  + X O  n c B  

where 

w, = 2rrn/p. 

These are the instanton solutions, with classical action 

A, = $f2pwi .  (2.10) 

The path in is the classical path with winding number n. Taking into account quantum 
fluctuations, a general path of winding number n has the form 

,?(TI = , f n ( T ) + V ( T )  (2.11) 

77(0) = 77@) = 0. (2.12) 

with 

The contribution of these paths to the partition function, the denominator of (2.5) is 

(2.13) zn = (exp -An/h) J’ [ ~ ~ ~ I E [ V I  

with (2.12) imposed. 

of the form 
Similarly, the numerator of equation (2.5) acquires a contribution from these paths 

(2.14) Tn = [exp(io,~-A./h)lJ’ [ d r l l E [ ~ I  exp h ( 7 ) .  

Both (2.13) and (2.14) are solvable. 
To obtain the two-point function from (2.13) and (2.14) we must sum over all 

homotopy classes. There is the well known phase ambiguity between contributions 
from paths belonging to different homotopy classes. The only acceptable phases in this 
case are 

-ye(n) = exp in0 - . i r S 6 S ~  (2.15) 

giving two-point functions? 

These sums can be expressed in terms of Jacobi O3 functions as 

(2.16) 

(2.17) 

where T’ = T (mod p) .  
From equation (2.17) we see that at high temperature ( p  0) 

i All paths are taken into account by integrating out the final degree of freedom O<xo<2r. This final 
integration gives ( ( ~ ( 7 ) )  = 0. Thus ( c p ( ~ ) c p * ( O ) )  is connected. 
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independent of 0 i.e. the instanton effects vanish. This is not surprising since instantons 
can only have significant effects if they can act over long periods of time (Polyakov 
1977), and periodicity in time with vanishing period p prevents this happening. 

Of more interest is the low-temperature limit ( p  +m).  We note that, using the 
duality property of O3 functions, 

That is, we have a 8-dependent correlation 'mass' m(0) given by 

(2.20) 

(2.21) 

It is in this result that we shall be primarily interested. 

3. The auxiliary field 

In this section we consider the auxiliary field formalism and indicate how the exact 
results of the previous section can be obtained by contour integration in the A plane. We 
examine the role played by the classical solutions in this integration. The partition 
function can be written as 

l P  
Z =I [dq][dcp*][dA] exp -- d ~ [ 1 d ( ~ + i A ( l ~ l ~ - , f ~ ) l .  2h I, 
The classical equations of motion 

2 2  ( -a2fih)cp(T) = 0 = lcpl  - f 

have solutions 

c p ( " ) ( ~ )  = f exp ign ( T )  

and 
2 

A ( " ) ( T )  = iw', = i(2.rrn/p) . 

(3.2) 

(3.3) 

(3.4) 

For n # 0, A ( n )  = A(-"), showing a two-fold degeneracy of the classical solutions. The 
cp - cp* - A  manifold is simply connected. Thus, if we perform a semiclassical approxi- 
mation for (3.1) the phases from different saddle-point contributions are fixed. 

In order to reproduce the phase ambiguity of (2.15), i.e. 0 vacua, (3.1) is replaced by 

Ze = [dq][dq*][dA] exp -- dr[Le +h(lcpI2- f2)] c (3.5) 

where 
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The equations of motion are unchanged, but the A solutions become 

For 8 f 0 the solutions are now non-degenerate. 
Integrating over cp and (p* we have (G(8) = -a2+iA - 8ha/rf2) 

2, = [dA] det G(0) exp - d d  I 2h I 
n dA, det(R2+iR)-l exp if2Ao/2h =I n 

(3.7) 

in terms of the Fourier components 

A, = A * 4  = p-l  d7 A (7) exp h , .T  (3.9) Io* 
with 

(3.10) 2 2 R2 = diag(. . . , 0-,, . . . , RT2, a!,, R:, a:, . . . , R,, . , .) 

(A), = Ai-j. (3.11) 

and 

Expressed as Fourier components (3.7) becomes 

Consider the surfaces of zeros passing through the solution A'"'. For small A,, p # 0 
(denoted A ' )  we can expand det(R2 + ih) as 

where the surfaces of zeros A(n)(A') have the form 

This gives a contribution to 2, of 

(3.13) 

(3.14) 

(3.15) 

The situation is described graphically in figure 1. Two of the axes describe Re Ao, 
Im A 0  and the third A ' .  The curve of interest describes A(')(A') of (3.14) as A'varies. We 
integrate over A. first. From (3.5) the deformation of the contour is permissible. By 
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Figure 1. The surfaces of zeros of det G(0) for 0 = 0. The curves in the Im A o -  A '  plane 
denote the solution A"'(A') (lower curve) and Av)(A')  (upper two curves). For fixed A '  
(broken line) the contour in the A. plane is folded up around the A(")(A') (chain curve). For 
0 ie 0 the classical solutions move off the imaginary axis for n # 0, and the curves are no  
longer coincident at the classical solutions. 

Cauchy's theorem we have 

In the semiclassical approximation (ti + 0) we obtain 

(3.16) 

(3.17) 

What is not obvious, in this formalism, is why the semiclassical approximation (3.17) is 
exact, as we know from 0 2. 

The case for 0 = 0 deserves further study. On the one hand we can get the result 
from (3.17). On the other hand we can make a direct computation for 0 = 0. However, 
the situation is different from the 0 = 0 case since the surfaces of zeros h ! " ' ( A ' )  are 
coincident in pairs at the classical solution A'"', n # 0. Because of these double zeros the 
behaviour of det( - d2 + ih) is more complicated. It can be seen that the surfaces are not 
harmonic in the A2" direction. As before, we fix A ' ,  deform the A. contour to pass 
around the two poles now present. In the semiclassical approximation non-Gaussian 
contributions interfere to give a Gaussian result. 
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To summarise, we see that we need knowledge of the surfaces of zeros of det( - 8’ + 
ih) in the vicinity of the classical solutions. It is not true that all relevant poles come 
from the classical solutions, as claimed in Jevicki (1979). 

4. The low-temperature expansion 

In the last section we showed how the instanton calculation can be reproduced in the 
auxiliary field formalism by contour integration. Here we show how the same results 
can be achieved by large p saddle-point calculations, technically analogous to the 1/N 
expansion. 

Defining 

El(8)  = exp - d r h  -Tr In G(B)) c; I 
we already have, from (3.8), that 

20 = [dhlE1(8). 

Let us first consider 8 = 0. In Fourier components 

det G(0) = det(R’ + in )  

2 = I np dhp exp[if2pA~/2h-ln sinh2(PJih,/2)] 
4 n p * o  U p  

x exp -Tr ln[l+ (R2+ihoU)-1(A-A~U)]. (4.4 

Each term in the exponents in (4.5) is O(p).  Thus, as /? + 03, 2 can be evaluated by 
saddle-point methods, expanding about the solutions to 

Jiho = $f-’ti coth(pJihol2). (4.5) 

i h  = f-4hZ + O(exp -cp). 

The most significant of these is A = h, given by 

(4.6) 
Consider again the two-point function. This is 

As p + 00 we obtain 

(4.7) 

(4.8) 

(4.9) 

-f2 exp -hr/f2. (4.10) 
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Thus the large p saddle-point also gives rise to a mass gap (of m = h / f 2  €or 8 = 0). 
However, the agreement with the exact case is only qualitative, the correlation mass 
being twice that of (2.21). 

Before examining this discrepancy we stress that we have performed a large /3 
saddle-point calculation, i.e. only the large p limit of (4.9) is reliable. However, had we 
performed a 1/N expansion and then set N = 2 we would have obtained (4.10) for 
arbitrary p. For small p (4.10) gives the classical result 

(40 ( T ) ( P * ( O ) )  - f2  (4.11) 

showing the 1/N expansion to be accurate here for N = 2f .  
As to the discrepancy, we can only assume that the single saddle point is insufficient. 

Other extrema exist lying on the positive, imaginary A. axis between the poles of the 
classical solutions A'"), given by A 0  = iq2  where 

(4.12) 

As p -+CO they coalesce to A. = 0. Although the action for these solutions is zero (rather 
than negative, as for A = i) the interplay between these extrema and the pole at ho = 0 
(the classical vacuum) is complicated, and we are unable to see in detail how the exact 
result is attained. 

For 8 # 0 the calculation is similar, though more tedious. We have 

and the large p saddle point is 

ih(8) =f-'h2(i - e 2 / 4 r 2 )  

(cp ( T ) ~ * ( O ) ) ,  - exp -T~-%(I  - t 1 / 2 ~ )  

and (4.13) becomes 

(4.13) 

(4.14) 

(4.15) 

in the large p limit, i.e. 

(cp(~)cp*(o))~ = ( c p ( ~ ) c p * ( ~ ) ) ~ = ~  ~ X P  -T8h/2,rrf2 (4.16) 

as with the exact case, though { ( O )  above gives the incorrect mass gap, as noted earlier. 
Remembering that the example considered here was one of those quoted in Jevicki 

(1979) in support of the (large p saddle point)-(instanton) equivalence, this shows that 
the hopes of Jevicki are unfulfilled, because of the greater complexity than expected 
from heuristic manipulations. 

5. Generalisations 

In 0 2 we observed that the manifestly non-h-perturbative instanton calculation for the 
two-point function (0 s T s p )  

t In one dimension there is no critical temperature, and hence no critical value of N. This may explain the 
accuracy of the 1/N expansion for such small N. This would not necessarily be true in more complicated 
theories. 
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can be expressed perturbatively in h as (0 s T s p )  

This property is generally true for exactly solvable models. To see this consider the 
solvable case when the manifold of fields is that of an r-parameter semi-simple Lie 
group G. Let us consider the Feynman propagator, K, for moving from w to w ’  in time I 
on G. This is exactly solvable (Dowker 1970, 1971) by means of classical paths as 

K = A  exp(&htR)(2~it)-‘19(t) exp(is?/2ht). 
i 

(5.3) 

R .is the scalar curvature of the manifold and A is expressible in terms of the roots of G. 
From our point of view the most important factor is the infinite sum, running over all 
classical paths, j ,  from w to w ’ ,  of length si. Note that (apart from time ordering) there is 
no obvious difficulty in analytically continuing t to -i.. 

Reverting to the Euclidean functional integrals for one-dimensional field theory we 
see that we are only interested in closed geodesics traversed in Euclidean time p. Thus 
the basic sum is (with matrix metric m )  

z = 1 exp(-s:/2ph) = B(Olim/ph) (5  -4) 

where 0 is a multi-dimensional 6 function? with matrix argument. We are only 
interested in how h arises in the arguments. 

In a typical two-point function, G ( T ) ,  Z of (5.4) would be the denominator. The 
numerator is of generic form 

i 

T = O(mw(.r)lim/@h)g(ti, T )  ( 5 . 5 )  

where g(h, T )  describes the Gaussian fluctuations, with a convergent expansion in 
powers of h, and w is an h-independent column matrix. We are only interested in the 
way h occurs in the final form 

(5 .6)  

As in the O(2) case of (2.17) both the numerator and the denominator of G, containing 
factors exp(-s2/2ph) term by term, have zero asymptotic series in h. However, by the 
duality transformation of 8 we can re-express G as 

Comparing (5.6) with ( 5 . 7 )  we see that all non-perturbative terms e-A’* have been 
replaced by terms e-@*. Thus, both numerator and denominator can be expressed in a 
power series in h, as would be implied by 1 / N  expansions, or any expansion cor- 
responding to a re-ordering of the Feynman series (for a model with no infinite 
renormalisation). It is conceivable that, whenever 1/N expansions and instanton 

f If n (with elements n,) and 2 are  A‘ column matrices and T an N x N matrix 
n = m  

O ( Z ~ T )  = ’1 e x p ( 2 i r i ~ + i r r ~ ~ n ) .  
n, = -02 
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calculations give identical results, a similar re-expression of terms O(e-"N) into terms 
O(e-A") has taken place. The presence of terms O(e-"N) should not necessarily imply 
the absence of an expansion in 1/N.  

Our final comment concerns the role of unstable instantons. For example, consider 
the one-dimensional Euclidean O ( N )  NLS model, N > 2. The manifold is SN-' and the 
closed periodic paths on SN-' are great circles, traversed n times, n E Z. Thus, the 
classical paths are embeddings of the O(2) multi-instanton paths in O ( N ) t .  Since SN-'  
is simply connected there is no conserved, topological charge. Thus, all classical paths 
for n # 0 are unstable. However, for N = 4 we have an exactly solvable, quantum 
mechanical model. Hence the quantum mechanics of the O(4) model is entirely 
determined by the classical paths, whether stable or not. Thus, if analytic continuation 
from real to imaginary time is possible without encountering any singularities, the 
unstable instantons will dominate the Euclidean path integral. 

Let us parametrise S 3  by the Weyl angles o'(i = 1, . . . , 4 )  satisfying Zi w i  = 0, 
-T s w s T.  The quantum mechanical sum over closed paths beginning and ending at 
wi = 0 is (Dowker 1970,1971) 

i 

where 1 is the 3 X 1 column vector with elements li ( i  = 1, 2, 3) and m is the positive 
definite matrix defined by 

iml =8(1:+1~+1:+1112+12/3+/311). (5.9) 

There is no difficulty in continuing from t + -iT in (5 .8 ) .  This suggests that, for models 
where the instanton calculations are exact the unstable instantons have to be included in 
the calculation. 

6 .  Conclusions 

In this paper we have examined the exactly solvable O(2) NLS model at finite 
temperature. We have provided a detailed example of Jevicki's program for comparing 
different non-perturbative (in h) approaches$. In particular, the nature of the contour 
integration in the auxiliary field formalism (to reproduce the instanton results) has been 
clarified. We have seen that knowledge of the surfaces of zeros in the neighbourhood of 
the classical solutions is necessary. This is particularly so when the classical solutions 
are degenerate. Some equivalence of the contour integration to the large p saddle- 
point calculation is indicated. We have been unable to establish a direct equality 
although both calculations give a mass gap. However, the mass gap in the single 
saddle-point approximation is twice that of the exact result. Presumably the other 
saddle points play a role. We have only considered the two-point function in the paper 
because higher-order connected n -point Green functions are non-leading (in 1/N and 
l / p ) ,  and agreement is even less likely to occur. 

f A similar situation occurs for the two-dimensional O ( N )  NLS model. Only for N = 3 is there a conserved 
topological charge. For N > 3 embeddings of the O(3) solution in O ( N )  provide unstable, classical solutions 
(Din and Zakrzewski 1980). 
$ T h e  O(2) NLS model was briefly considered in Jevicki (1979). 
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For exact solutions, when all methods must be equivalent, we are able to see how 
seemingly non-perturbative (in h )  instanton calculations can be re-expressed as a power 
series in h.  This is due to the duality transformations of generalised O3 functions, in 
terms of which the solutions to exactly solvable models can be expressed. Also, there 
are indications that analyticity in time is straightforward for exactly solvable models. 
This suggests that, for such models, unstable instantons should be included in instanton 
calculations. 
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